Satellite Basics

 \& AMSAT Update

 \& AMSAT Update}

John Kludt, K4SQC

AMSAT Ambassador
Atlanta,Georgia
April 10, 2018

Satellite Options

- Telemetry monitoring and reporting
- AO-85, AO-91, AO-92, AO-73
- FM Transponders
- SO-50, AO-85, AO-91, AO-92
- Linear Transponders
- AO-7, FO-29, AO-73, XW series

Orbital Terminology

- LEO (Low Earth Orbit) - 160 km - 2,000 km (100-1,240 miles) above earth
- Ascending Pass - relative to you, travels South to North
- Descending Pass - relative to you, travels North to South
- AOS (Acquisition of Signal) - time at which signal is first heard
- LOS (Loss of Signal) - time at which the signal is lost
- Duration - the time between AOS and LOS
- Azimuth - the compass direction between observer and satellite
- Elevation - height in degrees above your horizon
- Maximum Elevation - highest point of the pass in degrees
- Pass Predictions - a listing showing times when you can see satellite
- Footprint - the area on the ground covered by the satellite at any given time

Pass Predictions

- Multiple Offerings
- PC based
- Mac based
- Smartphone based
- Things to watch
- Is your location correct?
- Are your Keps current? (especially important ISS)
- Is your clock correct -watch UTC versus Local

Pass Prediction Sites/Software

- http://tinyurl.com/amsatpredict
- http://amsat.org.ar/sat.ht m
- SatPC32 (Windows)
- Macdoppler Pro (Mac)
- Predict (Linux)
- Gpredict (Linux)
- Numerous Smartphone Apps

Sample Pass Predictions

- WinAos QTH: -84.2/34.1 T\#: 13607 Sat.: 5 [Standard]
- Day Objects AOS (U) LOS Period maxEl AZ
- 04.04.2015 AO-73 15:11 15:20 09 38 028-172
- 04.04.2015 AO-73 16:48 16:55 0717 337-237
- 04.04.2015 FO-29 18:59 19:05 o6 09 077-025
- 04.04.2015 AO-07 19:27 19:42 $15 \quad 25114$-001
- 04.04.2015 FO-29 20:38 20:54 16 56 148-354
- 04.04.2015 SO-50 20:51 20:58 07 14 149-055
- 04.04.2015 AO-07 21:17 21:36 19 65 173-340
- 04.04.2015 FO-29 22:24 22:38 14 25 209-329
- 04.04.2015 SO-50 22:29 22:39 10 48 224-021
- 04.04.2015 AO-07 23:17 23:23 o6 o8 248-296
- 04.04.2015 ISS 23:21 23:24 03 o8 149-095
- WinAos QTH: -84.2/34.1 T\#: 13608 Sat.: 5 [Standard]

Telemetry Opportunities

- Another way to "work the satellites"
- Transponder plus data satellites
- AO-85/91/92
- (DUV) (Fox 1 Telemetry Analysis Tool)
- http://www.amsat.org/tlm/leaderboard.php?id=1\&db=FOXDB
- AO-73 (Funcube Dashboard)
- https://funcube.org.uk/ground-segment/gui/
- Numerous "Data Only" satellites
- Decode and Upload
- Contributes to the science

Transponder Types

FM Transponders

- FM Only
- Single Channel
- Capture Effect
- Fox Series
- AO-85
- AO-91
- AO-92
- Fox-1B
- SO-50

Analog Transponders

- SSB
- CW
- Bandpass of 20 to 100 KHz
- Many signals at once
- Examples
- AO-7
- FO-29
- AO-73
- XW series

Operational Modes

U/v (435 MHz up/144 Mhz down)

- AO-7*
- (Sometimes V/a - 144 up/29.5 down)
- AO-73
- AO-85
- AO-91
- AO-92
- (Sometimes L/v 1.2 GHz up/ 145 MHz down)
- XW series

V/u (144 MHz up/435 MHz down)

- FO-29
- SO-50

Work SO-50 (V/u FM Transponder)

- LEO satellite
- Altitude 426 miles avg
- Speed 16,754 MPH (1o minutes horizon-to horizon)
- FM Transponder
- Uplink 145.850 MHz (PL 67.0) (-124dBm)
- Downlink 436.795 (250 mW)

SO-50 Equipment Requirements

- HT or Transceiver with 2 m \& 70 cm capabilities
- 5 watts adequate
- Capable of at least 2.5 KHz steps
- Full duplex strongly recommended
- Antenna
- Arrow +/- preamp
- Alaskan Arrow
- Elk
- Home Brew (VE2ZAZ design)
- Clock
- A compass
- A recording device

Tricky Part - Doppler

SO-5o Downlink 436.795

- Doppler +/- 10 KHz
- Use several memories
- Half above midpoint
- Half below midpoint
- Tune for best audio
- You should be at 436.795 at Max Elevation

SO-50 Uplink 145.850

- Doppler +/-3.4 KHz
- Stays within standard FM bandpass
- Easy way out - just use 145.850 PL 67.0 for every step
- "Wake up PL" PL 74.4 for 2 seconds

Doppler Correction Card

$\begin{gathered} \mathrm{By}: \\ \text { KK4RGK } \end{gathered}$	Wakeup:	145.850
SO-50	RX	TX
\#1	436.815	145.850
\#2	436.810	145.850
\#3	436.805	145.850
\#4	436.800	145.850
\#5	436.795	145.850
\#6	436.790	145.850
\#7	436.785	145.850
\#8	436.780	145.850

AO-85/91/92 Equipment Requirements

- HT or Transceiver +/- SDR with 2 m \& 70 cm capabilities
- 5 watts adequate, a little more is better
- Capable of at least 2.5 KHz steps
- Full duplex absolutely required
- Antenna
- Arrow +/- preamp (Tx polarization "twist" may be needed)
- Alaskan Arrow
- Elk
- Home Brew (VE2ZAZ design)
- Clock
- A compass
- A recording device

AO-85 Frequencies (example)

- Uplink (Pl 67.0)
- 436.160 MHz (AOS)
- 436.165 MHz
- 436.170 MHz (Max E)
- 436.175 MHZ
- 436.18o MHz (LOS)
- Downlink
- 145.978 MHz

Don't forget to turn on your PL - no PL=no contacts No "easy way out" on U / v

AO-73 (U/v Linear Transponder)

- AMSAT-UK and AMSAT-NL
- Launched November 21, 2013
- 400 mw analog transponder (SSB/CW)
- Uplink 435.150 MHz - 435.130 MHz
- Downlink 145.950 MHz - 145.970 MHz
- 400 mw BPSK telemetry beacon (Dashboard)
- 145.935 MHz
- Per AMSAT-UK website "not more than 5 watts into a 7dB gain antenna"

AO -73 Tuning

- Some what tricky
- Doppler \&
- Drift in the master oscillator
- So, cat control really doesn't work very well
- Follow "The One True Rule"
- Find yourself by tuning the higher frequency link
- Uplink on AO-73
- Then tune uplink to stay on a relatively constant receive frequency that will itself drift and require retuning

Pass Reminders

- It is going to seem to be very busy
- Compass
- Visual AOS reminder
- Visual Max Elevation reminder
- Visual LOS reminder
- An elevation reminder
- An easy to read clock
- Tape recorder
- Open your squelch all the way on FM birds

I Didn't Hear Myself or Anything!

- Pass predictions correct?
- Location
- Keps
- Time
- True North?
- Was the satellite on?
- http://www.amsat.org/status/
- FM - did you have your PL (67.0 Hz) turned on?
- Rig/antenna issues?

"Five and Dime"

- Forward looking effort to explore new technology
- New SDR based communications platform
- 5 GHz up
- 10 GHz down
- Ground station component
- AMSAT Phase 4 Ground Terminal team
- http://www.arrl.org/arrlletter?issue=2016-02-25\#toco7
- Work underway - "water tower test system"

"Five and Dime" Flight Possibilities

- "Five and Dime" Space Team
- Phase 4B Geosynchronous Ride share
- Huge ARES potential
- Several important groups on board
- 2018 timeframe
- Phase 3E (?)
- Highly elliptical orbit, similar to AO-4o
- Long communications periods at apogee

AMSAT Membership

- Great way to explore new opportunities in a time of decreasing HF propagation
- Satellites expensive to build
- Good parts (don't just drive up to the site to fix!)
- Huge amounts of engineering
- Rigorous NASA flight testing
- As much as \$100,000 per launch
- Basic membership \$44 per year
- AMSAT Online Store http://store.amsat.org/catalog/

Questions?

