NFARL

September 2009

HF Antennas
FOR
HF Beginners

What we will cover.

- A little theory
- Types of antennas suited for beginners
-Some antenna show and tell

IF YOU DON'T REMEMBER ANYTHING ELSE FROM TONIGHT. REMEMBER THESE THREE THINGS!

1.

ALL MULTIBAND ANTENNAS ARE A COMPERMISE IN SOME PARAMETER!

2.

There ain't no free lunch.

3.

You get nothing for nothing!

Santa Claus is DEAD!

ANTENNAS

FROM THE GROUND UP

VOLUME 1

5. Nimbers 1 to 20

MWming

by L.B. Ce W4RNL

Band	1/8 WL	1/4 WL	1/2 WL	1 WL	2 WL	3 WL	10 WL
160	68 Ft .	136 Ft ,	273 Ft .	546 Ft	1092 F	1638 F	5460 F
80	35 Ft	70 Ft	140 Ft	281 Ft	562 Ft	843 Ft	2810 F
40	17 Ft	35 Ft	70 Ft	140 Ft	280 Ft	420 Ft	1400 F
20	8 Ft	17 Ft	35 Ft	70 Ft .	140 Ft	210 Ft	700 Ft
17	6 Ft	13 Ft	27 Ft	54 Ft .	108 Ft	162 Ft	540 Ft
15	6 Ft	12 Ft	24 Ft	49 Ft .	98 Ft	147 Ft	490 Ft
12	5 Ft	10 Ft	20 Ft	39 Ft .	78 FT	117 Ft	390 Ft
10	4 Ft	8 Ft	17 Ft	35 Ft .	70 Ft	105	350 Ft

This is the conventional method of depicting signal reflection from the earth by assuming there is an image antenna below the surface and the same distance below the surgace as the real antenna is above the surface. By using a little geometry it can be shown that the reflected wave travels a greater distance, the distance is equal to the length of line BC, and this length determines the phase of the two signals at the distance point P. Each antenna, whether vertical or horizontal, has an effective height and this determines where the signal reflects from the earth. This usually occurs approximately 1.5 to 2 wave length from the antenna. The point I want to make is that nothing you do directly under the antenna, such as increased radial fields, will effect the signal reflection point. It may increase the efficiency of the antenna but, it will not help the reflected signal. The only way to do that is to make the first reflection occur over salt water.

Fig 1-Variation in radiation resistance of vertical and horizontal half-wave antennas at various heights above flat ground. Solid lines are for perfectly conducting ground; the broken line is the radiation resistance of horizontal half-wave antennas at low height over real ground.

Fig. 8 Current and voltage distribation along a half-wave dipole.

Fig. 9 Cross section of surface pattern for a half-wave dipole in space (based on horizonta) and vertical field patterns af dipole).

Fig. 13 Impedance along a typical half-wave dipole.

Fig 14-Additional line loss due to standing waves (SWR, measured at the load). See Fig 23 for matchedline loss. To determine the total loss in dB, add the matched-line loss to the value from this graph.

This is one method of handling bringing ladder line down the side of a tower. The stand offs are made of $\mathbf{1 - 1 / 2}$ inch PVC pipe cut 24 -inches long and then a hole saw of $1-1 / 4$ inch diameter is used to cut a hole through the middle of the PVC pipe. This gives you 2 pieces appoximately12-inches long with a half-moon on one end. This end will just fit around the leg of Rhon 25 tower. About $\mathbf{1 / 2}$-inch ahead of the half-moon cut a vertical slots on each side of the pipe that will allow a hose clamp to slide through. When this is placed around the leg of the tower and tightened it make a very stout stand-off.

On the other end cut a vertical slot deep enough to allow the ladder line to slide all the way in. Drill a $1 / 4$-inch hole through the pipe at right angles to the slot. This will allow the use of a tie wrap to be used to hold the ladder line in the slot.

Give the ladder line about 1 twist per foot and this will keep the line from being whipped in the wind. It also allows the ladder line to have equal exposure on each wire to the tower .

Elevation Plot	
Azimuth Angle	0.0 deg.
Outer Ring	6.31 dBi

Cursor Elev	90.0 deg.
Gain	6.31 dBi
	0.0 dBmax

Slice Max Gain 6.31 dBi (Elev Angle $=90.0 \mathrm{deg}$
Bearnwidth $\quad 109.2$ deg.; $-3 \mathrm{~dB} @ 35.4,144.6 \mathrm{deg}$.
Sidelobe Gain $\leqslant-100 \mathrm{dBi}$
Front/Sidelobe $>100 \mathrm{~dB}$

40 feet 61.09 - J 3.236

Total Field
EZNEC Pro/2

Elevation Plot
Azimuth Angle Outer Ring

Slice Max Gain
Bearnwidth
Sidelobe Gain Front/Sidelobe
0.0 deg. 6.07 dBi

Elevation Plot		Cursor Elev	72.0 deg.
Azimuth Angle	0.0 deg.	Gain	6.23 dBi
Outer Ring	6.23 dBi		0.0 dBmax

Slice Max Gain $6.23 \mathrm{dBi} @$ Elev Angle $=72.0 \mathrm{deg}$.
Bearnwidth $\quad 125.6$ deg.; $-3 \mathrm{~dB} @ 27.2,152.8 \mathrm{deg}$.
Sidelobe Gain $\quad 6.23 \mathrm{dBi}($ Elev Angle $=108.0 \mathrm{deg}$.
Front/Sidelobe 0.0 dB
60 feet 80.33 - J 9.067

Elevation Plot Azirmuth Angle Outer Ring	${ }_{6.51}^{0.0} \mathbf{0}$ deg dei	$\underset{\substack{\text { cursor flev } \\ \text { Gain }}}{\text { cher }}$	$\begin{gathered} 37.0 \mathrm{deg} \\ .61 \mathrm{deg}, \end{gathered}$ ${ }_{0}^{0.0 .0 \text { demax }}$
Slice Max Gain Bearnwidth	$6.51 \mathrm{dBi} \propto$ Elev Angle $=37.0 \mathrm{deg}$. 49.6 deg.i. $-3 \mathrm{~dB} @ 17.0,66.6$ deg.		
Sticle	.0才8 100 feet 81.98-J $\mathbf{3 8 . 1 7}$		

4 Types of Wire Antennas

EZNEC Pro/2

$1 / 2$ WL Vertical Antenna

Vertical Antenna
"T" Antenna

Inverted "L"

Delta Loop. Can be feed at several points.

Loop Antennas

DIPOLE ANTENNA WITH DIFFERENT FEEDS

Elevation Plot	
Azimuth Angle	0.0 deg.
Outer Ring	6.23 dBi

Cursor Elev	72.0 deg.
Gain	6.23 dBi
	0.0 dBmax

Slice Max Gain $6.23 \mathrm{dBi} @$ Elev Angle $=72.0 \mathrm{deg}$.
Beamwidth $\quad 125.6$ deg.; -3dB $\propto 27.2,152.8$ deg.
Sidelobe Gain $\quad 6.23 \mathrm{dBi}$ (Elev Angle $=108.0 \mathrm{deg}$.
Front/Sidelobe 0.0 dB

Center Feed 60 foot

Total Field

EZNEC Proi2
3.8 MHz

Slice Max Gain
25.6 deg.; -3dB @ 27.2, 152.8 deg

Sidelobe Gain $\quad 6.23 \mathrm{dBi} @$ Elev Angle $=108.0 \mathrm{deg}$.
Front/Sidelobe 0.0 dB
Feed 33\% from end 60 foot
Total Field

Azimuth Angle 0.0 deg .
Outer Ring $\quad 6.21 \mathrm{dBi}$

Cursor Elev	72.0 deg.
Gain	6.21 dBi
	0.0 dBmax

Slice Max Gain $\quad 6.21 \mathrm{dBi} @$ Elev Angle $=72.0$ deg.
Bearnwidth $\quad 125.6$ deg.; -3dB $@ 27.2,152.8$ deg
Sidelobe Gain $\quad 6.21 \mathrm{dBi}(\underline{0}$ Elev Angle $=108.0$ deg.
Front/Sidelobe 0.0 dB
End feed 60 feet

Elevation Plot
Azimuth Angle 0.0 deg .
Outer Ring

Cursor Elev	72.0 deg.
Gain	6.23 dBi
	0.0 dBrmax

Aziruth Plot	
Elevation Angle	
Outer Ring	30.0 deg.
	3.78 dEi

Slice Max Gain $3.78 \mathrm{dBi} @ \mathrm{Az}$ Angle $=3.0 \mathrm{deg}$.
Front/Back $\quad 0.04 \mathrm{~dB}$
Beantwidth $\quad 92.8$ deg; $;-3 \mathrm{~dB} @ 316.2,49.0 \mathrm{deg}$.
Sidelobe Gain 3.78 dEi @ Az Angle $=177.0$ deg.
Front/sidelohe alimuth Pattern for all 3 feeds

Dipole Antenna with 3 Different Feeds on 20-Meters

Azimuth Plot	
Elevation Angle	30.0 deg
Outer Ring	3.78 dBi

Slice Max Gain	3.78 dBi@ Az Angle $=3.0$ deg .
Front/Back	0.04 dB
Bearnwidth	92.8 deg.; -3dB@ 316.2, 49.0 deg.
Sidelobe Gain	$3.78 \mathrm{dBi} ¢ \mathrm{Az}$ Angle $=177.0 \mathrm{deg}$.
Front/Sidelobe	0.0 dB 3.8 MH HZ Di

EZNEC Pro/2
Total Field

14.2 MHz

Azimuth Plot		Cursor Az	39.0 deg.
Elevation Angle	16.0 deg.	Gain	8.85 dBi
Outer Ring	8.85 dBi		0.0 dBmax
Slice Max Gain	8.85 dBi (Az Angle $=39.0$ deg .		
Front/Back	0.25 dB		
Bearnwidth	33.4 deg.; -3dB@ 24.4, 57.8 deg .		
Sidelobe Gain	$8.85 \mathrm{dBi} @$ Az Angle $=140.0 \mathrm{deg}$.		
Front/Sidelobe	0.0 dB		

3.8 MHz dipole on 14.2 MHz Center Feed

Azimuth Plot	
Elevation Angle	16.0 deg.
Outer Ring	8.78 dBi

Cursor Az	197.0 deg.
Gain	8.78 dBi
	0.0 dBmax

Slice Max Gain $8.78 \mathrm{dBi} @$ Az Angle $=197.0 \mathrm{deg}$.
Front/Back
1.02 dB
Bearnwidth 25.9 deg.; -3dB (@183.4, 209.3 deg
Sidelobe Gain $8.78 \mathrm{dBi} @ \mathrm{Az}$ Angle $=343.0 \mathrm{deg}$.
Front/Sidelobe 0.0 dB
3.8 MHz dipole on 14.2 MHz 33\% feed
3.8 MHz dipole on 14.2 MHz End feed

Elevation Plot
Azirnuth Angle Outer Ring
$-0.03 \mathrm{dBi}$

Cursor Elev Gain
26.0 deg.
$-0.03 \mathrm{dBi}$
0.0 dBmax

40 Meter Vertical over Ground Impedance $=36.03+\mathbf{J} 0.1224$ ohms

7.1 MHz

Cursor Eley
Gain
16.0 deg.
0.0 dBi 0.0 dBmax

40 meter $1 / 2$ Wave Vertical over Ground Impedance $=85.78+\mathbf{J} 0.07887$ ohms

Random Length wire 92-Feet long @ Appox. 45-Degrees

28.4 MHz Impedance $=712.2+\mathbf{J} 734.1$ ohms

3.8 MHz
3.8 MHz Impedance $=234.5+\mathbf{J} 857.7$ ohms

EZNEC Pro/2 Total Field

7.2 MHz
7.2 MHz Impedance $=\mathbf{6 5 . 2 6}+\mathbf{J} 1.476 \mathbf{~ o h m s}$

10.12 MHz Impedance $=403.3-\mathrm{J} 981.9 \mathrm{ohms}$

EZNEC Pro/2
Total Field

EZNEC Proi2
18.1 MHz Impedance $=\mathbf{2 5 2 . 5}+\mathbf{J} 492.5$ ohms
21.3 MHz Impedance = 106.1-J 93.99 ohms Random Length wire 92 feet long @ Appox. 45-degree

Cursor Elev

Elevation Plot	
Azirnuth Angle	0.0 deg.
Outer Ring	0.88 dBi

Elevation Plot
Azimuth Angle 0.0 deg．
Outer Ring $\quad 0.58 \mathrm{dBi}$

Cursor Elev Gain

25.0 deg．

0.58 dBi $0.0 \mathrm{~dB} \max$

Slice Max Gain $0.58 \mathrm{dBi}(\propto)$ Elev Angle $=25.0$ deg
Bearnwidth $\quad 45.4$ deg．；$-3 \mathrm{~dB} @ 8.4,53.8 \mathrm{deg}$ ．
Sidelobe Gain $\quad 0.58 \mathrm{dBi} ⿳ 亠 ⿴ 囗 十 灬$ Elev Angle $=154.0$ deg
Front／Sidelobe 0.0 dB

80－Meter＂T＂

Impedance $=\mathbf{2 7 . 4 6} \mathbf{-} \mathbf{J} 5.174$ ohms

Slice Max Gain $0.88 \mathrm{dBi} @$ Elev Angle $=153.0$ deg． Bearnwidth $\quad 51.1$ deg．；$-3 \mathrm{~dB}(\underset{1}{\infty} 120.2,171.3 \mathrm{deg}$ Sidelobe Gain $\quad-0.16 \mathrm{dBi} @$ Elev Angle $=26.0 \mathrm{deg}$ ．
Front／Sidelobe 1.04 dB

80－Meter Inverted＂L＂

 Impedance $=69.71+\mathbf{J} 315.9$ ohmsNow here to explain the Loop SkyWire and Loops in general
is the originator of the Loop SkyWire Antenna

> Dr. Dave Fisher W7FB (W0MHS)

Article first published in

November 1985 QST

HALF WAVE DIPOLE

Z_{a} is "reasonable" for $F_{1}=\underbrace{(2 n+1)}_{\text {ODD INTEGER }} F$
MULTI-BAND HALF WAVE dipoles ($\frac{1}{3}$ VERTICALS)

\qquad
\qquad
\qquad
FOLDED DIPOLE
$\lambda / 2$
$d \subset$ small, a
$A \approx 0$ few inches

$$
z_{a}=4 z_{d}
$$

Z_{a} is "reasonable" at ALL multiples (harmonics) of F

$$
\begin{aligned}
r= & \frac{\pi}{4} \approx 78 \% \text { of CIRCLE AREA } \\
& \lambda_{\text {LOOP }}=\frac{1005}{F_{m H z}} \ldots \text { Feet }
\end{aligned}
$$

$$
\eta_{s}=\eta_{1} \times \pi_{2}
$$

EQUATIONS for Power Transfer Worksheet

```
\(E=10 \mathrm{pwr}(-\mathrm{A} / 10)=10 \wedge(-\mathrm{A} / 10)\)
\(F=\operatorname{SQRT}\left[(B-C) \wedge 2+D^{\wedge} 2\right] / \operatorname{SQRT}\left[(B+C) \wedge 2+D^{\wedge} 2\right]\)
\(\mathrm{G}=(1+\mathrm{F}) /(1-\mathrm{F})\)
\(\mathrm{H}=\mathrm{E}^{*} \mathrm{~F}\)
\(I=(1+H) /(1-H)=(1+(E * F)) /(1-(E * F))\)
J \(=100\)
\(\mathrm{K}=\mathrm{E}^{*} \mathrm{~J}\)
\(\mathrm{L}=\mathrm{K}^{*}(\mathrm{~F} \wedge 2)=100^{*} \mathrm{E}^{*}(\mathrm{~F} \wedge 2)\)
\(M=E^{*} L=100 *(E * F) \wedge 2\)
\(\mathrm{N}=\mathrm{J}-\mathrm{M}=100 *\left(1-\left(\mathrm{E}^{*} \mathrm{~F}\right) \wedge 2\right)\)
\(\mathrm{P}=\mathrm{K}-\mathrm{L}=100^{*} \mathrm{E} *(1-(\mathrm{F} \wedge 2))\)
\(\mathrm{Q}=100^{*}(\mathrm{P} / \mathrm{N})=100^{*} \mathrm{E}^{*}(1-\mathrm{F} \wedge 2) /\left(1-\left(\mathrm{E}^{*} \mathrm{~F}\right) \wedge 2\right)\)
\(R=10 * \operatorname{LOG}(N / P)=A+\operatorname{LOG}\left[(1-F \wedge 2) /\left(1-\left(E^{*} F\right) \wedge 2\right)\right]\)
\(\mathrm{S}=\mathrm{R} / 6\)
\(\mathrm{T}=\mathrm{R}-\mathrm{A}=\operatorname{LOG}\left[(1-\mathrm{F} \wedge 2) /\left(1-\left(\mathrm{E}^{*} \mathrm{~F}\right) \wedge 2\right)\right]\)
\(U=100 /(1-(E * F) \wedge 2)\)
\(V=E * U=100 * E /(1-(E * F) \wedge 2)\)
\(\mathrm{W}=\mathrm{V} * \mathrm{~F} \wedge 2=100 * \mathrm{E}^{*}(\mathrm{~F} \wedge 2) /\left(1-\left(E^{*} \mathrm{~F}\right) \wedge 2\right)\)
\(x=E^{*} W=100^{*}((E * F) \wedge 2) /(1-(E * F) \wedge 2)\)
\(Y=U-X=100\)
\(Z=V^{*}(1-F \wedge 2)=100^{*} E^{*}(1-F \wedge 2) /\left(1-\left(E^{*} F\right) \wedge 2\right)=Q=A A\)
\(A A=100 * Z / Y=100^{*} E^{*}(1-F \wedge 2) /(1-(E * F) \wedge 2)=Q=A A\)
\(B B=Z-P=100^{*}(E \wedge 3) *(F \wedge 2) *(1-F \wedge 2) /(1-(E * F) \wedge 2)\)
```

 note ==>> nfar1: 102' g5rv apex@50 ends@24.5 ang1e 120degs

Freq (mhz) = =>			28	24	21	18	14	10	7	3.5
Total	Line Attn	(dB)	0.58	0.51	0.44	0.45	0.39	0.32	0.26	0.17
	Line (zo)	ohms	300.0	300.0	300.0	300.0	300.0	300.0	300.0	300.0
	Load (R)	ohms	3390.0	143.0	365.0	1972.0	114.0	1898.0	508.0	2808.0
	Load (X)	ohms	738.0	274.0	1169.0	1918.0	-142.0	2221.0	1138.0	-249.0

Line Los	0.875	0.889	0.904	0.902	0.914	0.929	0.942	0.962
Refl Coeff@load ${ }^{\text {a }}$	0.844	0.606	0.871	0.856	0.535	0.876	0.829	0.808
Load SWR (@ant)	11.84	-4.08	14.45			15.08	10.69	
Input SWR (@shack)	11.739 6.65	0.539 3.34	1 8.387	0.772	0.489 2.91	0.813 9.72	0.781 8.12	0.777 7.98

Fwd Pwr@Load (ant)	$\begin{array}{r} 100.0 \\ 87.5 \end{array}$	$\begin{array}{r} 100.0 \\ 88.9 \end{array}$	$\begin{array}{r} 100.0 \\ 90.4 \end{array}$	$\begin{array}{r} 100.0 \\ 90.2 \end{array}$	100.0	100.0	100.0 94.2	100.0 96.2
Pwr Refltd@Load	62.4	32.7	68.5	66.0	26.1	71.2	64.7	62.8
Pwr Return@Input (REF)	54.6	29.1	61.9	59.5	23.9	66.2	61.0	60.4
Net Pwr Out@Input	45.4	70.9	38.1	40.5	76.1	33.8	39.0	39.6
Pwr xfr to Load (ant)	25.1	56.2	21.9	24.1	65.3	21.7	29.5	33.3
Transfer Ratio (\%)	55.3	79.3	57.4	59.6	85.8	64.0	75.5	84.2
Pwr Pwr Loss (dB)	2.6	1.0	2.4	2.2	0.7	1.9	1.2	0.7
Pwr Loss (S-unit) Mismatch Loss	0.4	0.2	0.4	0.4	0.1	0.3	0.2	0.1
Mismatch Loss(dB)	2.0	0.5	2.0	1.8	0.3	1.6	1.0	0.6

Fwd Pwr@Input(FwD)	220.1	141.0	262.4	jugate Match				
Pwr @ Load (ant)	192.6	125.3	237.1	222.8	120.1	274.6	256.1	252.6
Pwr Refltd@Load	137.3	46.1	179.7	163.1	34.3	210.5	165.7	158.7
Pwr Return@Input (REF)	120.1	41.0	162.4	147.1	31.4	195.6	156.1	152.6
Net Pwr Out@Input	100	100	100	100	100	100	100	100
Pwr $\times f r$ to Load (ant)	55.3	79.3	57.4	59.6	85.8	64.0	75.5	84.2
Transfer Ratio (\%)	55.3	79.3	57.4	59.6	85.8	64.0	75.5	84.2
Improvement (watts)	30.2	23.0	35.5	35.5	20.5	42.4	46.0	50.9
Shack SWR ==>>(:>)	<1:1>	<1: $1>$	<1:1>	<1:1>	<1:1>	<1:1>	<1:1>	<1:1>

3.8 MHz

Azimuth Plot	
Elevation Angle	35.0 deg.
Outer Ring	3.39 dBi
Slice Max Gain	$3.39 \mathrm{dBi}(\bar{Q} \mathrm{Az}$ Angle $=270.0 \mathrm{deg}$.
Front/Back	0.35 dB
Beamwidth	$137.5 \mathrm{deg}:-3 \mathrm{~dB}(\mathbb{Q} 201.2,338.7$ deg.
Sidelobe Gain	$3.04 \mathrm{dBi}(\bar{Q} \mathrm{Az}$ Angle $=90.0 \mathrm{deg}$.
Front/Sidelobe	0.35 dB

80-Meter Loop Feed Center of one side Impedance $=147.6$ - J 63.13 ohms

Total Field

EZNEC Proi2

Cursor Az	270.0 deg.
Gain	3.39 dBi
	0.0 dBrmax

Azimuth Plot	
Elevation Angle	35.0 deg.
Outer Ring	3.52 dBi

Cursor Az	225.0 deg.
Gain	3.52 dBi
	0.0 dBmax

Slice Max Gain	$3.52 \mathrm{dBi}(\mathbb{Q}$ Az Angle $=225.0 \mathrm{deg}$.
Front/Back	0.43 dB
Beamwidth	$126.5 \mathrm{deg} . ;-3 \mathrm{~dB}(\mathbb{Q} 161.7,288.2 \mathrm{deg}$.
Sidelobe Gain	$3.09 \mathrm{dBi}(\mathbb{Q} . \mathrm{Az}$ Angle $=45.0 \mathrm{deg}$.

Sidelobe Gain $\quad 3.09 \mathrm{dBi}$ (Az Angle $=45.0 \mathrm{deg}$.
Front/Sidelobe 0.43 dB

80-Meter Loop Feed on One Corner Impedance = 149.9-J 66.19 ohms

Total Field

EZNEC Proi2

Elevation Plot	
Azimuth Angle	272.0 deg
Outer Ring	6.82 dBi

Slice Max Gain $6.82 \mathrm{dBi} @$ Elev Angle $=88.0$ deg.
Bearnwidth $\quad 103.1$ deg.; -3dB $@ 37.5,140.6$ deg.
Sidelobe Gain $<-100 \mathrm{dBi}$
Front/Sidelobe $>100 \mathrm{~dB}$

Cursor Elev	88.0 deg.
Gain	6.82 dEi
	0.0 dB max

Elevation Plot	
Azimuth Angle	25.0 deg.
Outer Ring	6.73 dBi

[^0]Slice Max Gain $6.73 \mathrm{dBi} @$ Elev Angle $=92.0 \mathrm{deg}$.
Beamwidth $\quad 101.2$ deg.; -3dB $@ 40.7,141.9$ deg.
Sidelobe Gain $\quad<-100 \mathrm{dBi}$
Front/Sidelobe $=100 \mathrm{~dB}$
Loop SkyWire Showing Different Feed Points

Azimuth Plot	
Elevation Angle	
	16.0 deg
Outer Ring	10.59 dB

Cursor Az	45.0 deg.
Gain	10.59 dBi
	0.0 dEmax

Slice Max Gain $10.59 \mathrm{dBi} @ \mathrm{Az}$ Angle $=45.0 \mathrm{deg}$. Front/Back
Bearnwidth $\quad 33.6$ deg.; $-3 \mathrm{~dB} @ 28.2,61.8 \mathrm{deg}$.
Sidelobe Gain 9.95 dBi (a. A Angle $=135.0 \mathrm{deg}$.

Frontidelobe 0.64 ab
 80-Meter Loop Corner Feed on 14.2 MHz

Impedance = 513.1-J 938.9 ohms

Azimuth Plot	
Elevation Angle	16.0 deg.
Outer Ring	8.69 dBi

Slice Max Gain 8.69 dBi (Az Angle $=40.0$ deg.
Front/Back
Beamwidth $\quad 30.3$ deg.; $-3 \mathrm{~dB} \propto 24.5,54.8 \mathrm{deg}$
Sidelobe Gain $\quad 8.69 \mathrm{dBi}(\underset{\sim}{2}$ A. Angle $=140.0 \mathrm{deg}$

Front/Sidelobe 0.0 dB
 80-Meter Loop Center of Leg on 14.2 MHz

Impedance $=454.8$ - $\mathbf{J} 994.8$ ohms

 0.0 dBmax

Elevation Plot	
Azirnuth Angle	40.0 deg.
Outer Ring	8.69 dBi
Slice Max Gain	$8.69 \mathrm{dBi} @$ Elev Angle $=16.0$ deg .
Bearnwidth	16.9 deg.; -3dB@7.9, 24.8 deg.
Sidelobe Gain	6.99 dBi (0) Elev Angle $=164.0$ deg.
Front/Sidelobe	1.7 dB

Elevation Plot	
Azimuth Angle	59.0 deg.
Outer Ring	10.58 dBi

Slice Max Gain $10.58 \mathrm{dBi} @$ Elev Angle $=11.0$ deg
Beamwidth $\quad 11.3$ deg.; -3 dB @ $5.4,16.7 \mathrm{deg}$.
Sidelobe Gain $\quad 10.11 \mathrm{dBi}$ (Elev Angle $=34.0$ deg
Front/Sidelobe 0.47 dB
80-Meter Loop Center of Leg on 21.3 MHz Impedance $=\mathbf{1 2 7 7}$ - $\mathbf{J} \mathbf{8 8 0 . 1} \mathbf{~ o h m s}$

Elevation Plot	
A.zimuth Angle	45.0 deg
Outer Ring	14.2 dBi

Slice Max Gain 14.2 dBi (Elev Angle $=11.0 \mathrm{deg}$.
Bearnwidth 11.0 deg.; -3 dB (5.3, 16.3 deg.
Sidelobe Gain $\quad 12.07 \mathrm{dBi} \propto$ Elev Angle $=169.0 \mathrm{deg}$
Front/Sidelobe 2.13 dB

Cursor Elev 11.0 deg
Gain $\quad 14.2 \mathrm{dBi}$
0.0 dBmax

EZNEC Pro/2
Total Field

80-Meter Loop Corner Feed on 21.3 MHz Impedance $=\mathbf{1 2 6 3} \mathbf{-} \mathbf{J} \mathbf{1 2 4 5} \mathbf{~ o h m s}$

Cursor Az

 Gain
A.zimuth Plot

 Elevation Angle 11.0 degOuter Ring

Slice Max Gain $14.2 \mathrm{dBi} @$ Az Angle $=45.0 \mathrm{deg}$
Front/Back
Beamwidth $\quad 22.8$ deg.; -3 dB ($93.6,56.4 \mathrm{deg}$
Sidelobe Gain $\quad 12.07 \mathrm{dBi} \propto \mathrm{Az}$ Angle $=225.0 \mathrm{deg}$.
10.63 dBi

58.0 deg.

10.63 dBi 0.0 dBmax

Loop SkyWire Feed on $21.3 \mathbf{M H z}^{\text {Front/sidelobe }}$

A.zimuth Plot	
Elevation Angle	11.0 deg.
Outer Ring	10.63 dBi
Slice Max Gain	$10.63 \mathrm{dBi} @ \mathrm{Az} \mathrm{Angle}=58.0 \mathrm{deg}$.
Front/Back	5.59 dB
Bearnwidth	19.9 deg.; -3 dB ¢ $47.8,67.7 \mathrm{deg}$.
Sidelobe Gain	$10.63 \mathrm{dBi} @ \mathrm{Az}$ Angle $=122.0 \mathrm{deg}$.
Front/Sidelobe	0.0 dB

Loop SkyWire Feed on $21.3 \mathbf{M H z}$

Cursor Az	45.0 deg.
Gain	14.2 dBi
	0.0 dBmax

[^0]: Cursor Elev Gain
 92.0 deg .
 6.73 dBi 0.0 dBmax

